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ABSTRACT
Audio event detection aims at discovering the elements inside
an audio clip. In addition to labeling the clips with the audio
events, we want to find out the temporal locations of these
events. However, creating clearly annotated training data can
be time-consuming. Therefore, we provide a model based
on convolutional neural networks that relies only on weakly-
supervised data for training. These data can be directly ob-
tained from online platforms, such as Freesound, with the
clip-level labels assigned by the uploaders. The structure of
our model is extended to a fully convolutional networks, and
an event-specific Gaussian filter layer is designed to advance
its learning ability. Besides, this model is able to detect frame-
level information, e.g., the temporal position of sounds, even
when it is trained merely with clip-level labels.

Index Terms— Weakly-supervised learning, audio events

1. INTRODUCTION

Audio event detection (AED), or sound event detection, can
be used in many scenarios, and a great body of research work
has been devoted to this topic. For example, when multi-
media files are uploaded to a website, we can automatically
recognize its content by analyzing the audio [1]. If AED is
applied to surveillance cameras and home security devices,
they can alert us when abnormal sound events such as scream-
ing, shouting, or gun-shots occur [2, 3, 4]. Special purposes
of sound events detection also include the work of Fischer
et al. which classifies breath and snore [5]. Salamon et al.
and Piczak apply AED to urban and environmental sound
events classification. The formers focus their work on fea-
ture learning for urban sound classification [6], and the latter
implements a model based on convolutional neural networks
(CNN) to distinguish environmental sounds [7].

However, all these prior arts on AED relies on fully-
supervised data for training. That is, an audio event is learned
from clips that only and clearly contain this specific event
[4, 6, 7, 8]. In real cases, such richly annotated data are
generally hard to come by, and producing them can be very
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time-consuming. Additionally, in many cases, multiple audio
events may occur at the same time, making it harder to collect
pure and clean training data. The difficulty grows even higher
when we try to scale up the number of sound classes.

On platforms like Freesound 1, there are a lot of audio
clips tagged with specific events. However, instead of being
omnipresent, the events may appear for a short period of time
in a clip. Moreover, we do not even know the location of those
events. These clips are called weakly-supervised data. If we
can train a competitive model with these weakly-supervised
files, our training data can be easily expanded.

Recently, a few people have also started to work on
weakly-supervised learning (WSL). In the field of AED, Ku-
mar et al. propose an approach of multiple instance learning
[9], and suggest two frameworks respectively based on neural
networks and support vector machine to solve the problem.
The difference between our model and their work is that we
use fully convolutional neural networks as the basic struc-
ture. We basically follow the model proposed by Liu and
Yang for music auto-tagging [10] but with data augmentation
on different volumes, which is essential in AED due to the
uncontrolled recording environment.

In our model, we apply a deep CNN based model, which
has performed successfully in visual object recognition and
music auto-tagging [10, 11]. This model is able to not only
detect the events appearing in an audio clip (i.e. making clip-
level prediction) but also localize these events on the temporal
axis (i.e. making frame-level prediction). It is important to
have frame-level prediction. For example, in a several-hour
surveillance video, we want to know not only the appearance,
but also the exact time of gun-shots or screaming.

In this paper, we investigate whether a model based on
WSL can detect the correct sound as accurate as state-of-the-
art method trained with fully-supervised data. Thus, we firstly
test the model on short clips, with each containing one clear
sound event, to see if the model can perform clip-level clas-
sification of the events. Then, we do frame-level prediction.
Our result of frame-level prediction will be compared with the
ground-truth annotations. We build and evaluate such models
with UrbanSound and UrbanSound8K datasets [12].

1Freesound.org: https://www.freesound.org/



Fig. 1: The proposed FCN model. This figure briefly shows the status of data during every stage of our model.

2. MODEL

The primary difficulty of performing WSL is to locate the tar-
gets, so we create a model based on CNN [13], replace the
fully-connected layers commonly used in CNN by convolu-
tional layers, and apply a global max pooling [14] layer at the
end of the model. Unlike fully-connected layers, which may
mix all information on the temporal axis into the final result,
global max pooling can select the most potential segment on
the time domain to be a final clip-level prediction. Moreover,
a model with this design, usually referred to as the fully con-
volutional networks (FCN), can easily take inputs of arbitrary
length.

Audio events may have different temporal properties.
Some events happen in merely a few frames, like dog bark,
while others can last for several minutes, such as air con-
ditioner. To deal with it, a Gaussian filter layer is inserted
between the last later convolutional layer and the final max-
pooling. This layer is implemented with convolution, but the
filter weights are set to fit a centered Gaussian distribution:

g[t] =
1√
2σ2π

e−
t2

2σ2 , (1)

where σ is the standard deviation in the Gaussian distribution.
g is applied to the signal s and scan through the signal:

(s · g)[n] =
M
2∑

m=−M
2

s[m] · g[n−m], (2)

where M is a pre-determined filter size.
During training phase, the Gaussian filter will alter its

standard deviation (σ) and learn a best value for each sound
class. We expect that labels with longer min-necessary dura-
tion will receive larger σ to prevent from capturing relatively
short activations, while labels with shorter min-necessary du-
ration will get smaller σ to emphasize the short activations.

In addition, we investigate the importance of multi-scale
features for AED, following the method used by Liu et al.
[10]. Since our input feature is based on spectrogram, we will
analyze features of multiple resolutions on time domain. Our

approach is to extract log-scale mel-spectrograms of different
window sizes by short-time Fourier Transform (STFT).

Overall, we propose a structure as shown in Fig. 1. The
input features are N log-scale mel-spectrograms, obtained by
performing STFT with N different window sizes, and their
first derivatives (delta).

In this model, we separate the convolutional layers into
two parts, early and late convolutional layers. The function
of early layers is the same as conventional CNN model, and a
max-pooling layer is provided after each convolutional layer.
We do the early layers of every scale individually, and then
join all of their results together at the concatenation layer.
The distinguishing feature of fully-convolutional networks is
performed at late convolutional layers. These layers are con-
structed of several filters with all their window sizes being
1, and there are no strides and no max-pooling after each
layer. At the last layer, we set the number of filters to the
total number of labels we are predicting. Afterwards, the out-
put of late convolutional layers will go through a Gaussian
filter layer as mentioned above, whose output is referred to as
segment-level prediction. Then, the segment-level prediction
will go through different processes for clip-level prediction
and frame-level prediction.

2.1. Clip-level prediction

The clip-level output is generated by a global max-pooling
layer after the late convolutional layers. This global max-
pooling layer will choose the highest prediction in segment-
level prediction as the final output of clip-level prediction.

Although the training and testing data we use in this paper
are all single labeled, the task should be treated as a multi-
label problem since most of the weakly-supervised data con-
tain more than one kind of event. Furthermore, we do not
know if a provided test clip contains the given events in a
real-life scenario, and a multi-label approach can accommo-
date the possibility of detecting nothing.

Since the task is formulated as a multi-label problem, we
use logistic function as the activation function in the last late
convolution layer, and the mean of binary cross-entropies of
each label as the cost function.



2.2. Frame-level prediction

To obtain frame-level predictions, we simply replace the
global max-pooling layer in the trained model with a up-
scaling layer. This layer repeats every value on segment-level
result for K times so that the final output has the same length
as its input in temporal axis. K is the product of all stride sizes
of early convolutional layers. For example, if the segment-
level prediction of one label is [1, 0.8, 0], and we get two
early convolutional layers with both their stride sizes being 2,
the final output will become [1, 1, 1, 1, 0.8, 0.8, 0.8, 0.8, 0, 0,
0, 0]. Apart from this change, all the other layers are exactly
the same as clip-level prediction.

3. DATASETS

We employ two datasets in our experiments: UrbanSound and
UrbanSound8K. We use UrbanSound for training and frame-
level evaluation, and use UrbanSound8K for clip-level eval-
uation. Both datasets are composed of ten different classes
of sounds came from Freesound.org. The ten classes and the
number of data can be seen in Table 1. Every clip in these
datasets contains only one label.

UrbanSound dataset comprises 1302 recordings with their
durations varying from from 1 second to over 30 seconds.
All audio clips are annotated with the onset and offset of the
sound events appearing in them. Because of these annota-
tions, we are able to evaluate frame-level predictions. How-
ever, notice that these temporal annotations are used only for
evaluating testing result. We do not use them in the training
phase. Although the size of UrbanSound is not large enough,
it is still the most suitable public dataset for our work.

UrbanSound8K is composed of 8732 short clips seg-
mented from files in UrbanSound. Files in UrbanSound8K
are less than or equal to 4 seconds and is labelled with one
class. It is used for clip-level evaluation.

4. EVALUATION AND DISCUSSION

There are two major parts in our experiment. The first part
shows the clip-level prediction of our model in different struc-
tures and compares the best result with a fully-supervised
work which was also test on UrbanSound8K. In the second
part, we will evaluate the result of frame-level prediction.

Our model is implemented with Theano [15] and Lasagne
2 and the features are extracted with Librosa [16]. The sam-
pling rate of audio files is set to 44100 Hz. The input feature is
composed of an 128-dimension mel-spectrogram and its first
derivative, which is also 128 dimensions. Our model con-
tains 2 early convolutional layers. Each layer comprises 60
filters with filter size 5 in time domain. We follow [17] and
do convolution only on time domain. Therefore, only the first
convolutional layer has its filter size 128 in frequency domain

2Lasagne: https://github.com/Lasagne/Lasagne

Table 1: This table provides the number of data in each
dataset, the learned standard deviations σ of Gaussian filter
layer after training, and the performance of our model. The
US dataset evaluated with AUC score represents the perfor-
mance of frame-level predictions, and the accuracy tested on
US8K is our clip-level evaluation result.

# of data AUC Acc.
Class US US8k σ US US8k
Air conditioner 64 1000 2.93±0.30 0.612 76.7%
Car horn 125 429 1.32±0.05 0.807 69.0%
Children playing 158 1000 1.08±0.07 0.594 41.8%
Dog bark 337 1000 0.96±0.06 0.790 79.5%
Drilling 119 1000 2.05±0.13 0.764 52.3%
Engine idling 97 1000 2.97±0.19 0.688 51.8%
Gun shot 117 347 1.13±0.16 0.921 94.4%
Jackhammer 45 1000 1.93±0.10 0.704 39.8%
Siren 74 929 2.09±0.17 0.763 59.0%
Street music 166 1000 1.51±0.10 0.737 61.3%
Total 1302 8732 0.738 59.4%

Table 2: The comparison between the clip-level accuracy of
basic setting and of adding one of multiple scales, data aug-
mentation, and Gaussian filter to the model.

w/ Multiple w/ Data w/ Gaussian
Basic scales augmentation filter

25.93% 37.51% 39.78% 51.73%

while the others have a filter size of 1. Each early convo-
lutional layer is followed by a max-pooling layer with both
pooling size and stride size being 4 in temporal axis (we are
not doing pooling on the frequency axis). The late layers in-
clude 3 consecutive convolutional layers with their filter size
being 1. We provide 128 filters for first two layers and 10 for
the last one, which is same number of total labels in Urban-
Sound. As for the Gaussian filter layer, we set the filter size
to 32, and the initial standard deviation σ of every class to 2.
All dropout rates in this model are set to 0.5, and the learning
rate is initialized to 0.006. We use Adaptive Gradient Algo-
rithm (AdaGrad) as our update function [18], so the learning
rate will be changed every time we update the parameters. As
the training data consist of clips of varied duration, we set
the batch size to 1 to simplify the training process. We run
300 epochs in every training set, and the model belong to the
epoch with highest validation accuracy will be selected as the
final model for an experimental setting.

4.1. Clip-level Evaluation

We begin with evaluating the following three modifications of
the CNN model. First, in the basic structure, the window size
of STFT is set to 1024. In the multi-scale setting, we instead
use a structure of 3-scale input feature with window sizes be-
ing 1024, 4096, and 16384. As we see in the Table 2, multi-
scale model outperforms the basic one with a large margin.
Second, owing to the fact that weakly-supervised data may



vary quite a lot in the volume of audio events, and that the
training data are scarce from UrbanSound, we augment our
training data by adding and reducing 5db to every clip. Thus,
we get triple training data and should make the model less
sensitive to the effect of diverse volume. The result shows
that it does improve the performance after data augmentation
on volume.

Third, we add the Gaussian filter described in Section 2.
We refer to the model with only single-scale input, no aug-
mentation and no Gaussian filter as the ‘basic’ model. We
than add one of these three modification to the model and in-
vestigate which one of them can more effectively improve the
basic model. The result is shown in Table 2. We can see that
the multi-scale feature is indeed helpful, improving the basic
model by a margin. In addition, the use of data augmentation
is also quite effective. More importantly, we found that Gaus-
sian filter largely improves the performance. Furthermore,
the final standard deviations of the Gaussian filters provide
insights regarding the classes. From Table 1, we can see that
sound classes with longer durations, such as “air conditioner”
and “engine idling,” obtain higher values, while classes with
shorter durations, like “gun shot” and “dog bark,” get lower
values. Therefore, if “gun shot” and “engine idling” are both
detected in a very short duration, gun shot is more likely to
be highlighted by the Gaussian filter layer. On the contrary,
the final prediction of engine idling will be reduced since this
kind of sound is supposed to occur in a longer duration.

Finally, we turn on all three functions. As shown in Table
1, our model attains 59.4% accuracy, which is better than the
result of using Guassian filter along. In a fully-supervised set-
ting, Piczak achieved 73.1% accuracy by training on subsets
of the UrbanSound8K itself. Although there is still a perfor-
mance gap, we consider our result promising for it only uses
weakly-supervised data from UrbanSound.

4.2. Frame-level Evaluation

We evaluate the frame-level result with average area under
ROC curve (AUC) [19], and Table 1 shows the results of over-
all and each class. In addition, we provide some visualized
frame-level results in Fig. 2. The ability of localizing events
can be well seen. Generally, when an event is detected, their
temporal locations are usually correct. Nevertheless, we still
found some reasons that may impact on AUC score. These
reasons may come from either the imperfection of ground-
truth annotation or the shortage of our model.

First is the shortcoming of labels. Take ‘77927.wav’ for
example, in this clip, we detected a large amount of street
music that is really inside the audio file. Nonetheless, the
ground-truth annotation contains only dog bark, which ap-
peared to be much smaller in volume and duration than street
music. Another reason is related to the duration of an event.
Some events are labeled in a long interval, but the sounds are
not continuously happening in that interval. For example, in
Fig. 2c, the dog was barking off and on throughout the clip,

but the whole clip was labeled as one continuous event. On
the other hand, one similar case occurs in Fig. 2d. However,
this time is the fault of our model that it recognized only some
components in street music instead of the whole region.

Like ‘77927.wav’ we just mentioned, some clips may in-
clude more than one kind of sound. In ‘106905.aif’, our
model discovered not only engine idling and siren, but also
street music in a very large scale. Furthermore, we can clearly
hear a loud music in the audio file. Due to the limited space,
we cannot show all these kinds of examples3, but these results
indicate that our model is able to detect polyphonic audio files
even though no polyphonic training is done in this paper.

(a) Drilling of 165640.wav (b) Jackhammer of 33340.wav

(c) Dog bark of 105088.wav (d) Street music of 41364.wav

Fig. 2: Visualized frame-level results. Red line is the ground-
truth, and blue denotes frame-level prediction.

5. CONCLUSION

We have used a model based on fully convolutional networks
to demonstrate that weakly-supervised learning is able to dis-
cover and identify audio events. On the other hand, the result
of frame-level evaluation shows that the model is able to per-
form sound event localization even when it is trained without
temporal annotations.

In this work, we have very limited number of data for
training for fair comparison with the state-of-the-art method.
Nevertheless, the proposed model is able to train with weakly
supervised data of arbitrary durations, without expensive hu-
man labors for data segmentation and cleaning. Besides, the
proposed model could detect multiple sound events in an au-
dio clip, which is not the case in UrbanSound8k. Therefore,
a future work is to train with larger datasets and evaluate on
multi-label datasets.

3For more demonstrations, please check out our project website:
https://tweihaha.github.io/research/aed-by-cnn/
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